Deutsch | English | Español | Français | Italiano | Português | Русский | العربية | 日本語 | 简体中文 | 繁體中文 | 한국의 | Türk | Polski
LOGO
Global B2B portal for electronics and ICT industry
Product / Service Supplier Catalogs & Literature    
Search
or
home Product News Catalogs Web TV News & Topics Featured Articles Trade Shows Sourcing Help My allitwares
Featured Articles Content
allitwares > Featured Articles > Ultra-sensitive force sensing with a levitating nanoparticle

Ultra-sensitive force sensing with a levitating nanoparticle
Author: Jan Gieseler, Lukas Novotny & Romain Quidant
Source From: Phys.org
Posted Date: 2013-12-04

A recent study led by researchers of the Institute of Photonic Sciences (ICFO) achieved the highest force sensitivity ever observed with a nano-mechanical resonator. The scientific results of this study have been published in Nature Physics.

Nano- and micromechanical oscillators with high quality (Q) factors have gained much attention for their potential application in sensing, signal processing and transduction as well as in fundamental research aiming at observing quantum effects in increasingly larger systems. Despite recent advances in the design and fabrication of mechanical resonators, their Q-factor has so far been limited by coupling to the environment through physical contact to a support. To overcome this limitation, the present work proposes to use optically levitated objects in vacuum that do not suffer from clamping losses.

In this recent ICFO study, scientists have optically levitated nanoparticles in high vacuum conditions and measured the highest Q-factor ever observed in nano- or micromechanical systems. The combination of an ultra-high Q-factor together with the tiny mass of the nanoparticles leads to an unprecedented force sensitivity at room temperature. The system is so sensitive that the weak forces arising from collisions between the nanoparticle and the residual air molecules are enough to drive it into the nonlinear regime. For the first time, this study demonstrates that ultra-high Q-factor nano-resonators intrinsically behave nonlinearly. In addition, the researchers show that, when combined with feedback cooling, the levitating nanoparticle can be used as a force-sensor, sufficiently sensitive to detect ultra-weak interactions, such as non-Newtonian gravity-like forces and tiny forces arising from quantum vacuum fluctuations.

Gieseler remarks that "Thermal motion is commonly observed in nano-mechanical systems. However, observing nonlinear features of thermal motion is a true novelty and, thus, challenges our understanding of how these high-Q nano-mechanical systems behave."
The advent of this new class of nano-mechanical oscillators will open new avenues for ultrasensitive force sensing and benefit the experimental investigation of quantum physics.

This discovery has been possible thanks to the collaboration between the Plasmon Nano-optics group led by ICREA Prof. at ICFO Romain Quidant and the Nano-Photonics group led by Prof. Lukas Novotny, from the Photonics Laboratory (ETH Zurich), as well as the support from the Fundació Cellex Barcelona through its Nest program.

 

Tags:

Original Hyperlink: http://phys.org/news/2013-11-ultra-sensitive-levitating-nanoparticle.html..

For more information from this magazine/website? Please click here http://phys.org/

Note: The copyright and the ownship of the brand, product names, product numbers, and content mentioned belongs to their repective companies.

comments powered by Disqus
Latest News

‧2014-05-22
Organizations Unprepared to Tackle Next Wave of Technology Trends

‧2014-05-09
Smaller Microchips Keep their Cool

‧2014-04-30
Information storage for the next generation of plastic computers

‧2014-04-29
Smart physical fusing can help secure datacenter uptime

‧2014-04-28
Gas Technology: Digital Age management

Related Catalogs
Featured Pages
5 Axis Machining CenterActuatorsAir ToolsAll-in-One Computers
Aluminum ExtrusionsAntennaAudio Power AmplifierAutomatic Coil Winding Machine
Brushless DC MotorsCable AssembliesCapacitorsCar Drive Recorders
CCTV CameraCircuit BreakersCircular ConnectorsClamp Meters
CNC EDMCNC Precision Machining PartsComputer CaseComputer Cooling Fan
Control ValvesCPU Heat SinksCrystal OscillatorsCustom PCB Manufacture
CylindersD-subminiature ConnectorsData Acquisition BoardDC/DC Converters
Die CastingDigital SignageDimmers and Lighting ControlsEarphone and Headset
Ethernet I/O ModulesFanless Embedded ComputerFlash Memory DeviceGear Reducer
Global Position SystemGrinding CenterHeating ElementIC Sockets
InductorIndustrial Ethernet SwitchesIndustrial RobotInjection Molding
iPhone/iPad AccessoriesKeyboard & KeypadKVM SwitchLCD Modules
Lead FramesLED Driver ICsLED LightsMachining Center
Metal EnclosuresMetal Stamping MoldsMicroprocessorOpen Frame Monitor
OscilloscopesPCB EquipmentPlastic FilmsPlastic Housing and Parts
PLCsPOS SystemsPower AdapterPower Supply
Power ToolsRAID ServersRelaysResistor
RF Microwave ConnectorsRFID DevicesSecurity Intercom SystemsServer
Servo MotorSingle Board ComputerSmart PhoneSolenoids
Switching HubTablet PCsTouch Panel ComputerUPS
VoIP Gateway and PhoneWireless Networking  
Contents
· Home
· Product News
· Catalogs
· Web TV
· News & Topics
· Features Articles
· Trade Show
· Sourcing Help
· My Allitwares
Special Zone
· Directory
· Trade Show Supplement
2014 Hannover
Allitwares.com
· About Us
· Promote Your Business
· Advertise
· Partner with Us
· Press Release
· Contact Us
· Term of Use
· Privacy Policy
· Starter Program
· Sitemap
B2B Web Portal Alliance
· Allitwares.com
· Allmetalworking.com
· Allbiomedical.com
· Allautowares.com
Buy Engineer Sample Kits
OEM Sourcing
Language
· Deutsch
· English
· Español
· Français
· Italiano
· Português
· Русский
· العربية
· 日本語
· 简体中文
· 繁體中文
· 한국의
· Türk
· Polski
 
   

Copyrights © 2012 Allitwares Corporation All Rights Reserved. www.allitwares.com is a Division of Allitwares Corporation
www.allitwares.com is a B2B Trade Portal | B2B Web Portal |B2B Marketplace for Electronics and ICT Industry