Deutsch | English | Español | Français | Italiano | Português | Русский | العربية | 日本語 | 简体中文 | 繁體中文 | 한국의 | Türk | Polski
LOGO
Global B2B portal for electronics and ICT industry
Product / Service Supplier Catalogs & Literature    
Search
or
home Product News Catalogs Web TV News & Topics Featured Articles Trade Shows Sourcing Help My allitwares
Featured Articles Content
allitwares > Featured Articles > Graphene nanoribbons an ice-melting coat for radar

Graphene nanoribbons an ice-melting coat for radar
Author: Mike Williams
Source From: Rice University
Posted Date: 2013-12-25

 

 

Ribbons of ultrathin graphene combined with polyurethane paint meant for cars is just right for deicing sensitive military radar domes, according to scientists at Rice University.

The Rice lab of chemist James Tour, in collaboration with Lockheed Martin, developed the compound to protect marine and airborne radars with a robust coating that is also transparent to radio frequencies.

The research was published this week in the American Chemical Society journal Applied Materials and Interfaces.

A video shows ice melting in minutes from a surface treated with graphene nanoribbons hooked to a power source in a chamber cooled to -4 degrees Fahrenheit.

Bulky radar domes (known as “radomes”) like those seen on military ships keep ice and freezing rain from forming directly on antennas. But the domes themselves must also be kept clear of ice that could damage them or make them unstable. This task is usually accomplished with a metal framework that supports and heats ceramic alumina (aluminum oxide), Tour said. But these materials are heavy, and metallic elements must be installed far from the source of radio signals to keep from interfering.

“It’s very hard to deice these alumina domes,” Tour said. “It takes a lot of power to heat them when they’re coated with ice because they’re very poor conductors.”

Graphene nanoribbons embedded in polyurethane paint, seen in an electron microscope image, are part of a deicing solution created by Rice and Lockheed Martin. The scale bar equals 1 micrometer. Courtesy of the Tour Group

Enter graphene, the single-atom-thick sheet of carbon that both conducts electricity and, because it’s so thin, allows radio frequencies to pass unhindered. Spray-on deicing material that incorporates graphene nanoribbons would be lighter, cheaper and more effective than current methods, Tour said.

“This started when (Lockheed Martin engineer) Vladimir Volman saw a presentation by Yu Zhu, a postdoc in my lab at the time,” he said. “Volman had calculated that one could pass a current through a graphene film less than 100 nanometers thick and get resistive heating that would be great for deicing. Zhu was presenting his technique for spraying nanoribbons films and Volman recognized the potential.”

Pristine graphene transmits electricity ballistically and would not produce enough heat to melt ice or keep it from forming, but graphene nanoribbons (GNRs) unzipped from multiwalled carbon nanotubes in a chemical process invented by the Tour group in 2009 do the job nicely, he said. When evenly dispersed on a solid object, the ribbons overlap and electrons pass from one to the next with just enough resistance to produce heat as a byproduct. The effect can be tuned based on the thickness of the coating, Tour said.

Graphic

A new compound created by Rice University and Lockheed Martin provides a thin, robust ice-melting coat for marine, airborne and other uses. The active element consists of carbon nanotubes "unzipped" into ribbons. Courtesy of the Tour Group

In initial experiments, the team led by Volman and Zhu spray-coated a surface with soluble GNRs. “They said it works great, but it comes off on our fingers when we touch it,” Tour said.

He found the solution in a Houston auto parts store. “I bought some polyurethane car paint, which is extremely robust. On a car, it lasts for years. So when we combined the paint and GNRs and coated our samples, it had all the properties we needed.”

Lab samples up to two square feet were assembled using a flexible polymer substrate, polyimide, which was spray-coated with polyurethane paint and allowed to dry. The coated substrate was then put on a hotplate to soften the paint, and a thin GNR coat was airbrushed on. When dried, the embedded ribbons became impossible to remove. Tour said the researchers have also tried putting GNRs under the polyurethane paint with good results.

The 100-nanometer layer of GNRs — thousands of times thinner than a human hair — was hooked to platinum electrodes. Using voltage common to shipboard systems, the compound was sufficient to deice lab samples cooled to -4 degrees Fahrenheit within minutes. Further experiments found them to be nearly invisible to radio frequencies.

Tour said the availability of nanoribbons is no longer an issue now that they’re being produced in industrial quantities.

Experiment

A waveguide in the Rice University lab of chemist James Tour frames a graphene nanoribbon film for testing. Rice developed the material as a thin, robust deicer for radar domes and other applications.Courtesy of the Tour Group

“Now we’re going to the next level,” he said, noting that GNR films made into transparent films might be useful for deicing car windshields, a project the lab intends to pursue.

Volman suggested the material would make a compelling competitor to recently touted nanotube-based aerogels for deicing airplanes in the winter. “We have the technology; we have the material,” he said. “It’s very durable and can be sprayed on to heat any kind of surface.”

Co-authors of the paper include Rice graduate students Abdul-Rahman Raji and Changsheng Xiang; Wei Lu and Carter Kittrell, research scientists at Rice’s Richard E. Smalley Institute for Nanoscale Science and Technology; and Bostjan Genorio, a former postdoctoral researcher at Rice, now a visiting scientist at Argonne National Laboratory. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science.

The Lockheed Martin Corp. through the LANCER IV program, the Air Force Office of Scientific Research and the Office of Naval Research supported the research.

Tags:

Original Hyperlink: http://news.rice.edu/2013/12/13/graphene-nanoribbons-an-ice-melting-coat-for-rad..

For more information from this magazine/website? Please click here http://news.rice.edu/

Note: The copyright and the ownship of the brand, product names, product numbers, and content mentioned belongs to their repective companies.

comments powered by Disqus
Latest News

‧2014-05-22
Organizations Unprepared to Tackle Next Wave of Technology Trends

‧2014-05-09
Smaller Microchips Keep their Cool

‧2014-04-30
Information storage for the next generation of plastic computers

‧2014-04-29
Smart physical fusing can help secure datacenter uptime

‧2014-04-28
Gas Technology: Digital Age management

Related Catalogs
Featured Pages
5 Axis Machining CenterActuatorsAir ToolsAll-in-One Computers
Aluminum ExtrusionsAntennaAudio Power AmplifierAutomatic Coil Winding Machine
Brushless DC MotorsCable AssembliesCapacitorsCar Drive Recorders
CCTV CameraCircuit BreakersCircular ConnectorsClamp Meters
CNC EDMCNC Precision Machining PartsComputer CaseComputer Cooling Fan
Control ValvesCPU Heat SinksCrystal OscillatorsCustom PCB Manufacture
CylindersD-subminiature ConnectorsData Acquisition BoardDC/DC Converters
Die CastingDigital SignageDimmers and Lighting ControlsEarphone and Headset
Ethernet I/O ModulesFanless Embedded ComputerFlash Memory DeviceGear Reducer
Global Position SystemGrinding CenterHeating ElementIC Sockets
InductorIndustrial Ethernet SwitchesIndustrial RobotInjection Molding
iPhone/iPad AccessoriesKeyboard & KeypadKVM SwitchLCD Modules
Lead FramesLED Driver ICsLED LightsMachining Center
Metal EnclosuresMetal Stamping MoldsMicroprocessorOpen Frame Monitor
OscilloscopesPCB EquipmentPlastic FilmsPlastic Housing and Parts
PLCsPOS SystemsPower AdapterPower Supply
Power ToolsRAID ServersRelaysResistor
RF Microwave ConnectorsRFID DevicesSecurity Intercom SystemsServer
Servo MotorSingle Board ComputerSmart PhoneSolenoids
Switching HubTablet PCsTouch Panel ComputerUPS
VoIP Gateway and PhoneWireless Networking  
Contents
· Home
· Product News
· Catalogs
· Web TV
· News & Topics
· Features Articles
· Trade Show
· Sourcing Help
· My Allitwares
Special Zone
· Directory
· Trade Show Supplement
2014 Hannover
Allitwares.com
· About Us
· Promote Your Business
· Advertise
· Partner with Us
· Press Release
· Contact Us
· Term of Use
· Privacy Policy
· Starter Program
· Sitemap
B2B Web Portal Alliance
· Allitwares.com
· Allmetalworking.com
· Allbiomedical.com
· Allautowares.com
Buy Engineer Sample Kits
OEM Sourcing
Language
· Deutsch
· English
· Español
· Français
· Italiano
· Português
· Русский
· العربية
· 日本語
· 简体中文
· 繁體中文
· 한국의
· Türk
· Polski
 
   

Copyrights © 2012 Allitwares Corporation All Rights Reserved. www.allitwares.com is a Division of Allitwares Corporation
www.allitwares.com is a B2B Trade Portal | B2B Web Portal |B2B Marketplace for Electronics and ICT Industry