Deutsch | English | Español | Français | Italiano | Português | Русский | العربية | 日本語 | 简体中文 | 繁體中文 | 한국의 | Türk | Polski
LOGO
Global B2B portal for electronics and ICT industry
Product / Service Supplier Catalogs & Literature    
Search
or
home Product News Catalogs Web TV News & Topics Featured Articles Trade Shows Sourcing Help My allitwares
Featured Articles Content
allitwares > Featured Articles > Eye-catching electronics

Eye-catching electronics
Author: Peter Rüegg
Source From: Eidgenössische Technische Hochschule Zürich
Posted Date: 2014-01-20

Researchers at ETH are developing electronic components that are thinner and more flexible than before. They can even be wrapped around a single hair without damaging the electronics. This opens up new possibilities for ultra-thin, transparent sensors that are literally easy on the eye.

Niko Münzenrieder submerges a ficus leaf in water containing pieces of a shiny metallic membrane. Using tweezers, he carefully moves one of these pieces on to the leaf of the houseplant. On lifting the leaf, the film sticks to it like glue. The post-doctoral researcher is demonstrating the special characteristics of this electronic component in the form of an ultra-thin membrane, which he has helped to develop. “These new thin-film transistors adhere to a wide range of surfaces and adapt perfectly,” explains the physicist.

In Professor Gerhard Tröster’s Electronics Lab, scientists have been researching flexible electronic components, such as transistors and sensors, for some time now. The aim is to weave these types of components into textiles or apply them to the skin in order to make objects ‘smart’, or develop unobtrusive, comfortable sensors that can monitor various functions of the body.

Supple but functional
The researchers have now taken a big step towards this goal and their work has recently been published in the journal Nature Communications. With this new form of thin-film technology, they have created a very flexible and functional electronics.

Within a year, Münzenrieder, together with Giovanni Salvatore, has developed a procedure to fabricate these thin-film components. The membrane consists of the polymer parylene, which the researchers evaporate layer by layer into a conventional two-inch wafer. The parylene film has a maximum thickness of 0.001 mm, making it 50 times thinner than a human hair. In subsequent steps, they used standardised methods to build transistors and sensors from semiconductor materials, such as indium gallium zinc oxide, and conductors, such as gold. The researchers then released the parylene film with its attached electronic components from the wafer.

An electronic component fabricated in this way is extremely flexible, adaptable and – depending on the material used for the transistors – transparent. The researchers confirmed the theoretically determined bending radius of 50 micrometers during experiments in which they placed the electronic membrane on human hair and found that the membrane wrapped itself around the hair with perfect conformability. The transistors, which are less flexible than the substrate due to the ceramic materials used in their construction, still worked perfectly despite the strong bend.

Smart contact lens measures intraocular pressure
Münzenrieder and Salvatore see ‘smart’ contact lenses as a potential area of application for their flexible electronics. In the initial tests, the researchers attached the thin-film transistors, along with strain gauges, to standard contact lenses. They placed these on an artificial eye and were able to examine whether the membrane, and particularly the electronics, could withstand the bending radius of the eye and continue to function. The tests showed, in fact, that this type of smart contact lens could be used to measure intraocular pressure, a key risk factor in the development of glaucoma.

However, the researchers must still overcome a few technical obstacles before a commercially viable solution can be considered. For instance, the way in which the electronics are attached to the contact lens has to be optimised to take into account the effects of the aqueous ocular environment. In addition, sensors and transistors require energy, albeit only a small amount, which currently has to be provided from an external source. “In the lab, the film can be easily connected to the energy supply under a microscope. However, a different solution would need to be found for a unit attached to the actual eye,” says Münzenrieder.

Professor Tröster’s laboratory has already attracted attention in the past with some unusual ideas for wearable electronics. For example, the researchers have developed textiles with electronic components woven into them and they have also used sensors to monitor the bodily functions of Swiss ski jumping star Simon Ammann during his jumps.

Reference
Salvatore GA, Münzenrieder N, Kinkeldei T, Petti L, Zysset C, Strebel I, Büthe L & Tröster G. Wafer-scale design of lightweight and transparent eletronics that wraps around hairs. Nature Communications, published online 7th January 2014. doi: 10.1038/ncomms3982

Tags:

Original Hyperlink: http://https://www.ethz.ch/en/news-and-events/eth-news/news/2014/01/eye-catching..

For more information from this magazine/website? Please click here https://www.ethz.ch/

Note: The copyright and the ownship of the brand, product names, product numbers, and content mentioned belongs to their repective companies.

comments powered by Disqus
Latest News

‧2014-05-22
Organizations Unprepared to Tackle Next Wave of Technology Trends

‧2014-05-09
Smaller Microchips Keep their Cool

‧2014-04-30
Information storage for the next generation of plastic computers

‧2014-04-29
Smart physical fusing can help secure datacenter uptime

‧2014-04-28
Gas Technology: Digital Age management

Related Catalogs
Featured Pages
5 Axis Machining CenterActuatorsAir ToolsAll-in-One Computers
Aluminum ExtrusionsAntennaAudio Power AmplifierAutomatic Coil Winding Machine
Brushless DC MotorsCable AssembliesCapacitorsCar Drive Recorders
CCTV CameraCircuit BreakersCircular ConnectorsClamp Meters
CNC EDMCNC Precision Machining PartsComputer CaseComputer Cooling Fan
Control ValvesCPU Heat SinksCrystal OscillatorsCustom PCB Manufacture
CylindersD-subminiature ConnectorsData Acquisition BoardDC/DC Converters
Die CastingDigital SignageDimmers and Lighting ControlsEarphone and Headset
Ethernet I/O ModulesFanless Embedded ComputerFlash Memory DeviceGear Reducer
Global Position SystemGrinding CenterHeating ElementIC Sockets
InductorIndustrial Ethernet SwitchesIndustrial RobotInjection Molding
iPhone/iPad AccessoriesKeyboard & KeypadKVM SwitchLCD Modules
Lead FramesLED Driver ICsLED LightsMachining Center
Metal EnclosuresMetal Stamping MoldsMicroprocessorOpen Frame Monitor
OscilloscopesPCB EquipmentPlastic FilmsPlastic Housing and Parts
PLCsPOS SystemsPower AdapterPower Supply
Power ToolsRAID ServersRelaysResistor
RF Microwave ConnectorsRFID DevicesSecurity Intercom SystemsServer
Servo MotorSingle Board ComputerSmart PhoneSolenoids
Switching HubTablet PCsTouch Panel ComputerUPS
VoIP Gateway and PhoneWireless Networking  
Contents
· Home
· Product News
· Catalogs
· Web TV
· News & Topics
· Features Articles
· Trade Show
· Sourcing Help
· My Allitwares
Special Zone
· Directory
· Trade Show Supplement
2014 Hannover
Allitwares.com
· About Us
· Promote Your Business
· Advertise
· Partner with Us
· Press Release
· Contact Us
· Term of Use
· Privacy Policy
· Starter Program
· Sitemap
B2B Web Portal Alliance
· Allitwares.com
· Allmetalworking.com
· Allbiomedical.com
· Allautowares.com
Buy Engineer Sample Kits
OEM Sourcing
Language
· Deutsch
· English
· Español
· Français
· Italiano
· Português
· Русский
· العربية
· 日本語
· 简体中文
· 繁體中文
· 한국의
· Türk
· Polski
 
   

Copyrights © 2012 Allitwares Corporation All Rights Reserved. www.allitwares.com is a Division of Allitwares Corporation
www.allitwares.com is a B2B Trade Portal | B2B Web Portal |B2B Marketplace for Electronics and ICT Industry